Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots \mathrm{A}$	D—H	H... A	D...A	$D-\mathrm{H} \cdots A$
OW1-H1...O21	0.75 (4)	2.37 (4)	2.836 (5)	122 (4)
OW1-H2 . OWW ${ }^{\text {i }}$	0.82 (5)	2.46 (6)	3.007 (5)	125 (5)
OW2-H3. . O 22	0.91 (4)	1.88 (4)	2.741 (5)	156 (4)
$\mathrm{OW} 2-\mathrm{H} 4 \cdots \mathrm{O} 1^{\text {ii }}$	0.81 (4)	2.13 (4)	2.895 (4)	157 (5)
O31-H31.. O21	0.82	1.846	2.570 (4)	146.4
O32-H32 . . O 22	0.82	1.848	2.559 (5)	144.2
$\mathrm{N} 21-\mathrm{H} 211 \cdots \mathrm{O} 2^{\text {iii }}$	1.08 (5)	1.78 (5)	2.850 (5)	171 (4)
$\mathrm{N} 21-\mathrm{H} 212 \ldots \mathrm{O} 2{ }^{\text {iv }}$	0.80 (3)	2.42 (4)	2.971 (4)	127 (4)
N22-H221...O41 ${ }^{\text {v }}$	0.94 (5)	2.04 (4)	2.974 (5)	173 (4)

Symmetry codes: (i) $x-1, y, z$; (ii) $1+x, y, z$; (iii) $x-1, y, 1+z$; (iv) $x, y, 1+z ;(v) 1+x, y, z-1$.

Phenyl H atoms were made to ride on C atoms with $U(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$. Hydroxy H atoms were also riding, but $U_{\text {iso }}$ for these was refined freely as were coordinates and $U_{\text {iso }}$ for amide and water H atoms. The absolute structure parameter indicates racemic twinning of the crystal.

Data collection: CAD-4 Software (Enraf-Nonius, 1994). Cell refinement: PARAM in XRAY76 (Stewart et al., 1976). Data reduction: NRCVAX (Gabe et al., 1989). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEPII (Johnson, 1971). Software used to prepare material for publication: SHELX97.

The financial support of the Ministry for Science and Technology, Republic of Slovenia, through grant No. J1-7313-103 is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1276). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Aulom. News, 8, 31-37.
Biagini Cingi, M., Lanfredi, M. M., Tiripicchio, A., Haasnoot, J. G. \& Reedijk, J. (1989). Acta Cryst. C45, 601-604.
Castro, I., Sletten, J., Glaerum, L. K., Lloret, F., Faus, J. \& Julve, M. (1994). J. Chem. Soc. Dalton Trans. pp. 2777-2782.

Enraf-Nonius (1994). CAD-4 Software. Version 5.1. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Hoang, N. N., Valach, F. \& Melnik, M. (1993). Z. Kristallogr. 208, 27-33.
Hökelek, T., Budak, K., Şendıl, K. \& Necefoğlu, H. (1998). Acta Cryst. C54, 347-348.
Johnson, C. K. (1971). ORTEPII. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.
Kozhemyak, N. V., Podberezskaya, N. V. \& Bakakin, V. V. (1980). Zh. Strukt. Khim. 21, 124-128.
Kozlevčar, B., Fajfar, S., Petrič, M., Pohleven, F. \& Šegedin, P. (1996). Acta Chim. Slov. 43, 385-395.

Leban, I., Kozlevčar, B., Sieler, J. \& Šegedin, P. (1997). Acta Cryst. C53, 1420-1422.
Schindler, S. \& Szalda, D. J. (1995). Inorg. Chim. Acta, 228, 93-101.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Stewart, J. M., Machin, P. A., Dickinson, C. W., Ammon, H. L., Heck, H. \& Flack, H. (1976). The XRAY76 System. Technical Report TR446. Computer Science Center, University of Maryland, College Park, Maryland, USA.

Acta Cryst. (1999). C55, 178-180

Pentaaqua(chelidonato- O^{4}) $\operatorname{copper}($ II) monohydrate

Lubica Manolović-Muir, Kenneth W. Murr, Robert A. Campbell, John E. McKendrick and David J. Robins

Chemistry Department, University of Glasgow, Glasgow G12 8QQ, Scotland. E-mail: ken@chem.gla.ac.uk
(Received 20 July 1998; accepted 16 September 1998)

Abstract

In crystals of pentaaqua(4-oxo- 4 H -pyran-2,6-dicarboxyl-ato- O^{4})copper(II) hydrate, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{O}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Cu}^{\text {II }}$ cation is surrounded by an elongated O_{6} octahedron. The chelidonate anion $\left\{\right.$ chel, $\left.\left[\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{COO})_{2}\right]^{2-}\right\}$ binds to the metal centre through the carbonyl rather than a carboxylate oxygen, and forms a long axial $\mathrm{Cu}-\mathrm{O}$ bond $\left[2.6746(16) \AA\right.$]. The axial $\mathrm{Cu}-\mathrm{O}_{\mathrm{aqua}}$ bond is also relatively long [2.3763(15) \AA]. The molecular assembly in the crystal is stabilized by a complex threedimensional network of intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds [$\mathrm{O} \cdots \mathrm{O} 2.597$ (2)-2.851 (2) \AA], the water molecules providing the donors, and the carboxylate and carbonyl groups of the chel ligand most of the acceptors, of the hydrogen bonding.

Comment

Dihydrodipicolinate synthase, a key enzyme in the biosynthesis of lysine via the diaminopimelate pathway (Borthwick et al., 1995), can be inhibited by chelidonic acid [(I); 4-oxo-4H-pyran-2,6-dicarboxylic acid]. Our interest in interactions of this acid and its derivatives with water, which has led us to determine the crystal structure of the title compound, (II), stems from the mediating role of water in molecular recognition of enzymes and small-molecule inhibitors.

(I)

(II)

The molecular structure of $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\right.$ chel $\left.)\right] \cdot \mathrm{H}_{2} \mathrm{O}$ is shown in Fig. 1. The chel anion displays bifunctional properties, combining the ability of the carbonyl O6 atom to form a bond to the metal centre with the ability of the carboxylate groups to act as hydrogen-bond acceptors. The $\mathrm{Cu}-\mathrm{O}$ bond is long [2.6746(16) \AA], but it is comparable with weak axial $\mathrm{Cu}^{\text {II }}-\mathrm{O}$ bonds in other complexes with elongated octahedra (Lu et al., 1995; Garcia-Lozano et al., 1996; Kawata et al., 1997). The axial $\mathrm{Cu}-\mathrm{O}_{\text {aqua }}$ bond $[2.3763(15) \AA$] is longer than the equatorial ones $[1.9206(14)-1.9749(13) \AA \AA$. These values are typical of $\mathrm{Cu}^{\mathrm{II}}$ complexes (Alcock et al., 1996; Orpen et al., 1989).

Fig. 1. The molecular structure of (II) and the atom numbering in the asymmetric unit, which comprises the $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right.$ (chel)] complex and the O 12 water molecule to which it is hydrogen bonded. Displacement ellipsoids are shown at the 50% probability level, except for H atoms, which are represented as spheres of arbitrary radii. Also shown are the $12 \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in which the O atoms of the asymmetric unit act as donors. The symmetry codes are as given in Table 2.

The surface of the $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\right.$ chel $\left.)\right]$ complex is composed of complementary hydrogen-bonding groups, and the complex is thus capable of self-recognition by means of multiple intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2). All ten aqua ligand H atoms participate in hydrogen bonds, while the chel residue can and does accept a maximum of nine such bonds (two to each carboxylate O atom and one to O 6 of the carbonyl group). Of the five aqua O atoms, only O 5 acts as a hydrogen-bond acceptor; the donor is water oxygen O12, which participates in a total of four hydrogen bonds, two as acceptor and two as donor.

The basic motif in the crystal architecture is a centrosymmetric bimolecular aggregate, linked together by four $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds $\left[\mathrm{O} 2 \cdots \mathrm{O} 8^{\text {iv }}, \mathrm{O} 3 \cdots \mathrm{O}^{\text {iv }}\right.$, $\mathrm{O} 2^{\mathrm{iv}} \ldots \mathrm{O} 8$ and $\mathrm{O}^{\mathrm{iv}} \ldots \mathrm{O}$; symmetry code: (iv) $-1-x$, $1-y, 1-z]$ to form a dimeric loop containing two eight-membered $\mathrm{Cu}(\mathrm{OH})_{2} \mathrm{OOC}$ rings, reminiscent of those in carboxylic acid dimers. Adjacent bimolecular aggregates are interlinked by a second $\mathrm{Cu}(\mathrm{OH})_{2} \mathrm{OOC}$
ring involving Ol and O 2 , by the $\mathrm{O} 3 \cdots 6^{\mathrm{V}}$ bond [symmetry code: (v) $-x,-y, 1-z$], and by the donation from O 4 to $\mathrm{O}{ }^{\text {vi }}$ and $\mathrm{O} 10^{\text {vi }}$ [symmetry code: (vi) $1+x, y-1$, z]. The complex three-dimensional hydrogen-bonding network is completed by the bonds from O5 and O12.

Coordination to Cu through the carbonyl O 6 atom thus places the chel anion in a favourable hydrogenbonding environment. Coordination through the more basic carboxyl O atoms would seem to offer less opportunity for hydrogen-bond formation, and might require more disruption of the stable Cu^{11} hydration sphere. It is also worth noting that the longer $\mathrm{Cu}-\mathrm{OH}_{2}$ bond to O 5 is associated with enhanced ability to accept a hydrogen bond compared with $\mathrm{Ol}-\mathrm{O} 4$.

Experimental

An aqueous suspension of equimolar amounts of chelidonic acid and copper sulfate was heated at 348 K for 30 min and then filtered. The crystals used in the analysis formed when the resulting solution was kept at room temperature for two weeks.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{O}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=353.72$
Triclinic
$P \overline{1}$
$a=7.3402(13) \AA$
$b=8.7066(13) \AA$
$c=11.179(2) \AA$
$\alpha=70.591(16)^{\circ}$
$\beta=81.513(18)^{\circ}$
$\gamma=71.158(17)^{\circ}$
$V=637.07(19) \AA^{3}$
$Z=2$
$D_{x}=1.844 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (Enraf-Nonius, 1994)
$T_{\text {min }}=0.390, T_{\text {max }}=0.766$
3894 measured reflections
3717 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.088$
$S=1.089$
3717 reflections
236 parameters
H atoms: see below

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=20.8-26.1^{\circ}$
$\mu=1.777 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate
$0.45 \times 0.38 \times 0.15 \mathrm{~mm}$
Blue

> 3462 reflections with
> $I>2 \sigma(I)$
> $R_{\text {int }}=0.006$
> $\theta_{\max }=30^{\circ}$
> $h=-10 \rightarrow 10$
> $k=-11 \rightarrow 12$
> $l=0 \rightarrow 15$
> 3 standard reflections frequency: 120 min intensity decay: none
$\Delta \rho_{\text {max }}=0.68$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.61 \mathrm{e}^{-3}$
Extinction correction:
SHELXL97 (Sheldrick, 1997)

Extinction coefficient: 0.039 (3)

```
\(w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0568 P)^{2}\right.\)
        \(+0.3136 P]\)
    where \(P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }<0.001\)
```

Table 1. Selected bond lengths (\AA)

$\mathrm{Cu}-\mathrm{O} 1$	$1.9206(14)$	$\mathrm{O} 9-\mathrm{C} 6$	$1.252(2)$
$\mathrm{Cu}-\mathrm{O} 3$	$1.9351(13)$	$\mathrm{O} 10-\mathrm{C} 7$	$1.253(2)$
$\mathrm{Cu}-\mathrm{O} 4$	$1.9585(13)$	$\mathrm{O} 11-\mathrm{C} 7$	$1.2414(19)$
$\mathrm{Cu}-\mathrm{O} 2$	$1.9749(13)$	$\mathrm{C} 1-\mathrm{C} 5$	$1.441(2)$
$\mathrm{Cu}-\mathrm{O5}$	$2.3763(15)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.444(2)$
$\mathrm{Cu}-\mathrm{O} 6$	$2.6746(16)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.346(2)$
$\mathrm{O} 6-\mathrm{C} 1$	$1.2471(19)$	$\mathrm{C} 3-\mathrm{C} 6$	$1.517(2)$
$\mathrm{O}-\mathrm{C} 3$	$1.3485(17)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.341(2)$
$\mathrm{O} 7-\mathrm{C} 4$	$1.3524(17)$	$\mathrm{C} 4-\mathrm{C} 7$	$1.512(2)$
$\mathrm{O} 8-\mathrm{C} 6$	$1.240(2)$		

Table 2. Hydrogen-bonding geometry $\left({ }_{A}^{\circ},^{\circ}\right)$

D-H. . A	D-H	H...A	D.. A	$D-\mathrm{H} \cdots \cdot \mathrm{A}$
O12- $\mathrm{H} 12 \mathrm{~A} \cdots \mathrm{O}^{\text {i }}$	0.925 (16)	1.853 (16)	2.776 (2)	175 (3)
O12-H12B . $\mathrm{OS}^{\text {ii }}$	0.970 (16)	1.963 (18)	2.851 (2)	151 (2)
$\mathrm{Ol}-\mathrm{H} 14 \cdots \mathrm{Ol} 0^{\text {iii }}$	0.76 (3)	1.85 (3)	2.597 (2)	173 (3)
$\mathrm{Ol}-\mathrm{H} 1 B \cdots \mathrm{Ol2}$	0.76 (4)	1.94 (4)	2.693 (2)	171 (4)
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O}^{\text {iv }}$	0.81 (4)	1.93 (4)	2.7343 (19)	176 (4)
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{Ol} 1^{\text {iii }}$	0.77 (3)	1.94 (3)	2.7137 (18)	179 (3)
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O}^{\text {v}}$	0.75 (3)	1.95 (3)	2.6812 (19)	166 (3)
O3-H3B $\cdots \mathrm{O}^{\text {iv }}$	0.80 (4)	1.82 (4)	2.6105 (18)	169 (4)
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{~A} \cdots \mathrm{O}^{\text {vi }}$	0.82 (4)	1.87 (4)	2.691 (2)	174 (3)
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{Ol} 0^{\text {vi }}$	0.72 (3)	1.99 (3)	2.7122 (19)	178 (3)
O5-H5A . O11 ${ }^{\text {vii }}$	0.84 (3)	1.95 (3)	2.7835 (19)	171 (3)
O5-H5B..O12 ${ }^{\text {viii }}$	0.62 (5)	2.20 (5)	2.813 (2)	168 (6)

Symmetry codes: (i) $-1-x,-y, 1-z$; (ii) $x-1, y, z$; (iii) $-1-x, 1-$ $y,-z$; (iv) $-1-x, 1-y, 1-z$; (v) $-x,-y, 1-z$; (vi) $1+x, y-1, z$; (vii) $1+x, y, z$; (viii) $-x,-y,-z$.

In the final calculations, restraints were applied to the parameters of the two O 12 water molecule H atoms ($\mathrm{O}-\mathrm{H} 0.97 \AA$ and $\mathrm{H}-\mathrm{O}-\mathrm{H} 109.5^{\circ}$), but other H atoms were refined freely.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994). Cell refinement: CAD-4 EXPRESS. Data reduction: GX (Mallinson \& Muir, 1985). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEP-3 (Farrugia, 1997). Software used to prepare material for publication: CIFWRITE (Muir \& Pauson, 1996).

We wish to thank the EPSRC for an equipment grant.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1282). Services for accessing these data are described at the back of the journal.

References

Alcock, N. W., Busch, D. H. \& Vance, A. L. (1996). Acta Cryst. C52, 1134-1136.
Borthwick, E. B., Connell, S. J., Tudor, D. W., Robins, D. J., Shneier, A., Abell, C. \& Coggins, J. R. (1995). Biochem. J. 305, 521-524.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Garcia-Lozano, J., Server-Carrio, J., Coret, E., Folgado, J.-V., Escriva, E. \& Ballesteros, R. (1996). Inorg. Chim. Acta, 245, 75-79.

Kawata, S., Breeze, S. R., Wang, S., Greedan, J. E. \& Raju, N. P. (1997). Chem. Commun. pp. 717-718.

Lu, T.-H., Liu, Y.-L. \& Chung, C.-S. (1995). Acta Cryst. C51, 22752277.
© 1999 International Union of Crystallography
Printed in Great Britain - all rights reserved

Mallinson, P. R. \& Muir, K. W. (1985). J. Appl. Cryst. 18, 51-53.
Muir, K. W. \& Pauson, A. (1996). CIFWRITE. A Program for CIF Editing. University of Glasgow, Scotland.
Orpen, A. G., Brammer, L., Allen, F. M., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.
Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford University Press.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1999). C55, 180-182

catena-Poly[[[bis(1,3-diaminopropane$\left.N, N^{\prime}\right)$ nickel(II)]- μ-(4,4'-bipyridine- $\left.\left.N: N^{\prime}\right)\right]$ diperchlorate]

Ye-Xiang Tong, Ming-Liang Tong, Xiao-Lan Yu and Xiao-Ming Chen
School of Chemistry and Chemical Engineering, Zhongshan University, Guangzhou 510275, People's Republic of China.
E-mail: cedc03@zsu.edu.cn

(Received 15 April 1998; accepted 2 September 1998)

Abstract

In the structure of the title polymer, $\left\{\left[\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2^{-}}\right.\right.$ $\left.\left.\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}\right\}_{n}$, the metal atom is in a slightly distorted octahedral NiN_{6} geometry surrounded by four N atoms of two 1,3-diaminopropane ligands in equatorial positions [2.131 (2) and 2.145 (2) \AA] and two N atoms from 4,4'-bipyridine ligands in axial sites [2.165 (3) and $2.205(3) \AA$ Å]. The 4,4'-bipyridine ligands bridge neighbouring $\mathrm{Ni}^{\mathrm{II}}$ atoms to form polymeric chains in the

 lattice.
Comment

Coordination polymers using 4,4'-bipyridine as bridging ligands have been of special interest in recent years. These compounds may exhibit interesting topological structures (Gable et al., 1990; MacGillovray et al., 1994), and clathrates of the cavity structures have possible applications in catalysis and separation (Fujita et al., 1994). Dinuclear and polynuclear metal complexes with $4,4^{\prime}$-bipyridine bridges are also of magnetic interest (Julve et al., 1987; Slangan et al., 1993; Xu \& $\mathrm{Su}, 1990$). We have recently prepared some interesting one- and two-dimensional coordination polymers using $4,4^{\prime}$-bipyridine as bridging ligands (Chen et al., 1996; Tong, Cai et al., 1998; Tong, Chen et al., 1998; Tong, Ye et al., 1998). We describe herein the crystal structure of another one-dimensional coordination polymer using

